
Logging Package

Status and Plans

Ron Rechenmacher

CCM

3 February 2021

Introduction1

3 February 2021 Ron Rechenmacher | Finished Logging Package 2

The CCM is responsible for providing a complete solution for capturing, distributing and

archiving logs. Logs in this context are debug statements, information , warning and

error messages2. While debug statements can be unstructured3, all higher-level4 types

of messages are structured, carry a well-defined set of information fields and extend

from a base class that can be thrown and caught as an exception.

1 Statement from an email from Alex Tapper, in concert with Giovanna and Alessandro.

2 There are 6 severities or streams: fatal, error, warning, info, log, and debug.

3 All messages have at least 2 destinations: memory/fast and stdout/err. (Another destination is “network,” i.e. MTS). For debug

statements, a structured object can be used, or a streamer-type message which, when sent to destination(s) other than

memory/fast, will be used to create a Message (structured) object. For the memory/fast destination for debug statements, the

streamer-type message and/or the message from the structured object is stored in the memory buffer and later retrieved and

formatted with other information specified by an environment variable and sent to standard out (or redirected elsewhere).

4 Higher-level types are: fatal, error, warning, and info.

Specifications1

3 February 2021 Ron Rechenmacher | Finished Logging Package 3

The logging system shall provide the following functionality:

1. Provide a base class for all structured messages and tools to generate the specific
messages in a straightforward way.

2. Provide APIs for reporting debug text and messages.

3. Provide an API to subscribe to messages using a set of criteria.

4. Provide a set of stream implementations for the dispatching of debug text and
structured messages to stderr and stdout, as well as network-based streams.

5. Provide a mechanism to receive structured messages over the network, for message
subscription.

6. Provide a message archiving system and a UI to search for and analyze messages,
live and post-mortem.

1 Specifications are from an email from Alex Tapper, in concert with Giovanna and Alessandro.

Interfaces1

The interfaces between the DAQ software and the logging system are defined as follows:

1. Debugging:

a. The logging system provides and API to log unstructured messages for debugging purposes.

b. The logging system provides tools to dynamically turn on/off or tune the level and type of debug statements which
are output.

2. Structured information:

a. The logging system provides the base class from which all the messages need to extend as well as helper
macros to define specific types.
Note: DUNE chose to use the ERS library developed within ATLAS and the base class is the ers::Issue.

b. The logging system provides an API in order to be able to output messages according to their severity.

c. The logging system provides the tools to configure the implementation of the streams used for each severity.

d. The logging system provides an API to subscribe to messages using a set of criteria (e.g. subscribe by message
type, application name, hostname, severity, …).

e. The DAQ software consistently uses the logging system and ensures that the verbosity of the messages is
appropriate.

3 February 2021 Ron Rechenmacher | Finished Logging Package 4

1 Interfaces are from an email from Alex Tapper, in concert with Giovanna and Alessandro.

Rev. 1.0.0 of logging package – basic overview

3 February 2021 Ron Rechenmacher | Finished Logging Package 5

• ERS has 6 logging methods and 3 logging macros (in addition to Issue declaration macros):

- ers::fatal(const Issue &)

- ers::error(const Issue &)

- ers::warning(const Issue &)

- ers::info(const Issue &)

- ers::log(const Issue &)

- ers::debug(const Issue &, int)

- ERS_INFO(message)

- ERS_LOG(message)

- ERS_DEBUG(level, message)

• The first 4 (blue) are to be used, and the last 5 (red) are not (directly); the macros are #undef’d

Rev. 1.0.0 of logging package – basic overview - continued

3 February 2021 Ron Rechenmacher | Finished Logging Package 6

• TRACE provides 8 TLOG* macros:

- TLOG_ERROR, TLOG_WARNING, TLOG_INFO, TLOG_TRACE, TLOG_DEBUG,

TLOG_DBG, TLOG, and TLOG_ARB

• 2 survive and 6 are #undef’d.

Rev. 1.0.0 of logging package - summary

3 February 2021 Ron Rechenmacher | Finished Logging Package 7

1. CMakeLists.txt changes:

- Add: find_package(logging REQUIRED)

- Remove: find_package(ers REQUIRED) and find_package(TRACE <version> REQUIRED)

- To DEPENDANCIES, add: logging:logging

2. #include “logging/Logging.hpp”

3. Use ERS DECLARE_* macros, as usual

- I suspect there may be an “issues package”

4. Use:
ers::fatal(ers::Issue &)
ers::error(ers:: Issue &)
ers::warning(ers:: Issue &)
ers::info(ers:: Issue &)
TLOG() << message _or_Issue;
TLOG_DEBUG(lvl) << message_or_Issue

note: existing uses of TLOG() may need to be adjusted.

5. Remove any uses of ERS_LOG, ERS_INFO, and ERS_DEBUG

Addressing The Specifications

3 February 2021 Ron Rechenmacher | Finished Logging Package 8

include “logging/Logging.hpp”

Nests ers/ers.h and TRACE/trace.h

1. Provide a base class for all structured messages and tools to generate the specific messages in a straightforward way.

Base class provided by ERS. Macros provided to DECLARE issues with attributes
(arguments). C-style casts seem to be required.

2. Provide APIs for reporting debug text and messages.

TLOG_DEBUG(lvl) << text << arg;
TLOG_DEBUG(lvl) << ers::Issue(); // define operator<< for other objects.

3. Provide an API to subscribe to messages using a set of criteria.

For all ERS levels/streams, ERS environment variables (e.g. TDAQ_ERS_ERROR) support
filter specifications. These variables need to be defined before or very early during program
execution. TRACE provides environment variable and command line utilities to specify
“name”:”level mask” pairs to select which messages go to the memory buffer and for the “log”
and “debug” destinations which messages go to ERS.

Addressing The Specifications - continued

3 February 2021 Ron Rechenmacher | Finished Logging Package 9

4. Provide a set of stream implementations for the dispatching of debug text and structured messages to stderr and stdout, as well as network-based streams.

ers::log and ers::debug are used by a “trace user method” and other operator<< methods.

5. Provide a mechanism to receive structured messages over the network, for message subscription.

This is currently not addressed by the logging package (v1.0.0).

6. Provide a message archiving system and a UI to search for and analyze messages, live and post-mortem.

Archiving is currently not addressed by the logging package (v1.0.0).

“tshow –F” from a separate terminal window, with standard unix filtering, can be used to show

message from the memory buffer as they are put in by the application.

Addressing the Interfaces

3 February 2021 Ron Rechenmacher | Finished Logging Package 10

1. Debugging:

a. The logging system provides and API to log unstructured messages for debugging purposes.

Debug messages to other than memory will be “structured” by use of ers:debug w/

ers::Message or other ers::Issue. Message from the memory buffer retrieved via tshow will

be formatted according to the format specification in the env.var. TRACE_SHOW.

b. The logging system provides tools to dynamically turn on/off or tune the level and type of debug statements which are output.

The command line function tlvls is used to show the current memory buffer configuration.

The command line functions tonM{,g,G}, and toffM{,g,G} (6 functions) are used to turn

on/off various levels for a specific name, wildcard name or all names (current or future).

Addressing the Interfaces - continued

3 February 2021 Ron Rechenmacher | Finished Logging Package 11

2. Structured information:

a. The logging system provides the base class from which all the messages need to extend as well as helper macros to define specific types.
Note: DUNE chose to use the ERS library developed within ATLAS and the base class is the ers::Issue.

ERS methods and macros, as described above are used.

b. The logging system provides an API in order to be able to output messages according to their severity.

4 ERS methods (with “erstrace” destination configured) are used directly and 2 TRACE macros
with a TRACE_LOG_FUNCTION configured which calls the remaining 2 ERS methods (if
enabled by dynamic configuration) are used. All 6 severities are covered.

c. The logging system provides the tools to configure the implementation of the streams used for each severity.

The system relies on environment variables for configuration. The logging package provides
Logging().setup() to provide reasonable defaults for the environment variables in case they are
not provided by the user or CCM. Note: if Logging().setup() is not called, the high level ers
methods will not send to the memory buffer, but the TLOG macros will still send, if configured to
the appropriate ers streams.

d. The logging system provides an API to subscribe to messages using a set of criteria (e.g. subscribe by message type, application name, hostname, severity, …).

Standard ERS filter specifications in the standard TDAQ_ERS environment variables are
used.

Addressing the Interfaces - continued

3 February 2021 Ron Rechenmacher | Finished Logging Package 12

e. The DAQ software consistently uses the logging system and ensures that the verbosity of the messages is appropriate.

The ERS stream environment variables support a throttle specification. The logging

package supplies the TLOG() macro which, currently, can not be dynamically disabled, and

the TLOG_DEBUG(lvl) macro which can be dynamically disabled (in addition to throttled).

Should TLOG() to ERS (slow path) be disable-able?

No limits or direct guidance on which messages should be INFO, LOG, or DEBUG.

To-do’s

3 February 2021 Ron Rechenmacher | Finished Logging Package 13

1. Pull requests for appfwk, trigemu, readout packages (and listrev).

2. TLOG*() << message ==> ers::log(ers::Message(msg)) set time to match
fast/membuf time.

3. Check for “caused by” in streamer methods. (Low priority). Done in erstrace ERS
destination.

4. Logical OR of existing TRACE_LVLS env.var. in Logging().setup().

5. Real tests – ers output, memory messages, and levels.

6. Investigate 2nd ers::debug – always at level 0. Ref. ers debug code – severity is set
and set back???

7. README (and other documentation)

8. (Work w/ John when he’s back to) clean up any loose ends? cmake, lint, etc.

9. Address issue with year in date (TRACE_TIME_FMT)

TRACE message control

3 February 2021 Ron Rechenmacher | Finished Logging Package 14

• export TRACE_FILE=/tmp/trace_buffer_$USER # in setup (append $PARTITION)
OR export TRACE_MSGMAX=0 # if interactive (less typing)

• tlvls shell function shows levels, e.g. minidaq:

mode: M=1 S=1

TID NAME maskM maskS maskT

---- ------------------------ ------------------ ------------------ ------------------

20 DAQSink 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

101 TriggerDecisionForwarder 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

268 TRACE 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

293 TriggerInhibitAgent 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

643 RequestGenerator 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

771 HDF5DataStore 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

842 DataWriter 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

890 FragmentReceiver 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

954 DAQSource 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

1021 _TRACE_ 0x00000000000001ff 0x00000000000000ff 0x0000000000000000

TRACE message control - continued

3 February 2021 Ron Rechenmacher | Finished Logging Package 15

• Env. Vars: TRACE_NAMLVLSET, TRACE_LVLS, TRACE_LVLM

• Shell (cmdline) functions: tlvlsSave, tlvlsRestore

• Shell (cmdline) functions: t{on,off}{M,S}{,g,G}

- -n name, -N regex

- Levels

• Raw Bit Levels: 0-63

• Debug Levels 0-55 (raw_level – 8)

/home/ron/work/DUNEPrj/AD202

1-01-27_v2.2.0/MyTopDir

(dbt-pyvenv) ron@mu2edaq13

:^) tcntl lvlstrs | head

0 FATAL

1 ALERT

2 CRIT

3 ERROR

4 WARNING

5 NOTICE

6 INFO

7 LOG

8 DEBUG

9 DEBUG_1

--2021-02-03_00:24:02_CST--

Debugging options

3 February 2021 Ron Rechenmacher | Finished Logging Package 16

1. Traditional log file

- export TDAQ_ERS_DEBUG_LEVEL=63

- export TRACE_LVLS=-1

2. tshow

3. tshow -F

Log File vs Mem File (tshow)

3 February 2021 Ron Rechenmacher | Finished Logging Package 17

2021-Feb-03 00:51:12,327 DEBUG_0 [main(...) at /home/ron/work/DUNEPrj/AD2021-01-

27_v2.2.0/MyTopDir/sourcecode/logging/test/apps/performance.cxx:96] hello from DEBUG_6 loop 0

2021-Feb-03 00:51:12,327 DEBUG_6 [main(...) at /home/ron/work/DUNEPrj/AD2021-01-

27_v2.2.0/MyTopDir/sourcecode/logging/test/apps/performance.cxx:96] hello from DEBUG_6 loop 1

VS

02-03 00:51:12.327859 0 246818 246818 25 performance:96 D06 main: hello from DEBUG_6 loop 1

02-03 00:51:12.327559 300 246818 246818 25 performance:96 D06 main: hello from DEBUG_6 loop 0

delta_us pid tid

